
International Journal of Theoretical Physics, Vol. 24, No. 3, 1985 

Similarity Solutions of the Euler Equation and the 
Navier-Stokes Equation in Two Space Dimensions 
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With the help of the continuous symmetries of the Euler equations and the 
Navier-Stokes equations, respectively, we derive similarity solutions of these 
equations for two space dimensions. We show that all group theoretical reduc- 
tions lead to linear nonautonomous or linear autonomous ordinary differential 
equations for incompressible fluids. 

1. INTRODUCTION 

Both the Euler equations and the Navier-Stokes equations are non- 
linear systems of partial differential equations and therefore explicit 
solutions cannot be given in general. However, with the help of the symmetry 
generators of  these equations we can construct similarity Ans~itze. Using 
these similarity Ans~itze we can reduce the Euler equations or Navier-Stokes 
equations to ordinary differential equations which are in general nonlinear. 
In some cases it is possible to solve these ordinary differential equation. 
However, in most cases the differential equations must be solved numeri- 
cally. 

In the present paper we give the symmetry generators for the Euler 
equations and Navier-Stokes equations for two and three space dimensions. 
Then we use these symmetry generators for constructing similarity Ans~itze 
for the Euler equations and Navier-Stokes equations in two space 
dimensions, where we assume that the fluid is incompressible. With the 
similarity Ansfitze we derive the ordinary differential equations. We find 
for incompressible flow that all reductions of  the two-dimensional Euler 
equations leads to linear differential equations. 
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In the f o l l o w i n g  we  consider  the Euler equat ions  and Nav ier -S tokes  

(1) 

equations with dimensionless variables, i.e., 

0 u / 0 t + u  �9 Vu = -Vp 

and 

Ou/Ot + u. Vu = -Vp + (1/Re)V2u (2) 

For incompressible flows the dimensionless continuity equation takes the 
form V. u = 0. 

2. INVARIANCE GROUPS 

In order to find similarity solutions of an evolution equation we are 
forced to derive its symmetry group. In the present case Buchnev (1971), 
Strampp (1980), and Olver (1982) have classified the one-parameter Lie 
symmetry groups of the Euler equations. The authors give the infinitesimal 
generators. The technique to find them has been described for example by 
Bluman and Cole (1974). A different approach has been described by Steeb 
and Strampp (1982) where also Lie-Biicklund vector fields (if any exist) 
can be included. The infinitesimal generators of the Navier-Stokes equations 
have been given by Lloyd (1981). We mention that if two infinitesimal 
generators admit a given evolution equation, then the infinitesimal generator 
which is given by the commutator of these two infinitesimal generators also 
admit the evolution equation. Consequently, the infinitesimal generators 
which admit a given evolution equation from a Lie algebra. 

The Lie symmetry group of the Euler equations in three space 
dimensions is generated by the infinitesimal generators (u = (u, v, w)) 

T =3/Ot 

X =fl( t)  O/ox+f](t)  O/Ou - f ] ' ( t ) x  3/3p 

Y =fR(t) a/oy +f'2(t) o/ov - f ~ ( t ) y  o/op 

Z =f3(t) O/oz+f'3(t) o / o w - f ~ ( t ) z  o/op (3) 

S 1 : X a / a x + y  O/Oy+z a/oz+ t a/at 

$2 = t o/ot - u o/ou - v a/ov - w o/ow - 2 p  o/op 

R I 2  = x a/ay - y a/ox + u a/ov - v a/au 

R23 = y  O/ Oz - z  O/ Oy + v O/ Ow-  w O/ Ov 

R31 = z o / a x -  x o/oz + w o /Ou-  u O/ow (4) 

G =f4(t) O/Op 
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where f~ , . . .  ,f4 are arbitrary smooth functions of  the time t and f~(t)=-- 
d f ( t ) / d t .  The physical meaning of these infinitesimal generators is quite 
obvious. In two space dimension (x, y) the symmetry generators reduce to 
T, X, Y, R~2, G, and 

Sj = x a / o x  + y O/Oy + t o /a t  

,~2 = t o /a t  - u o /ou  - v O/Ov - 2p o /op  

Thus we set S = Si + 32. The associated transformation groups which we 
need for our similarity Ansfitze are given by 

(x, y, z, t, u, v, w, p ) ~ e x p ( e K ) ( x ,  y, z, t, u, v, w, p )  (5) 

where K stands for one of the infinitesimal generators. For example, 
consider the infinitesimal generator $2. Then the associated transformation 
group is given by 

(x, y, z, t, u, v,  w, p )  ~ (x, y, z, e~t, e-~u, e-Ev, e-ew,  e-Z~p) (6) 

where e is the group parameter. Frequently, this is written as 

x = Xo,  Y = Yo,  z = Zo, t = toe" 

u = uoe -~, v = roe -~, w = Wo e -e ,  p =po e-zE 

The Lie symmetry group of the Navier-Stokes equation is generated 
by the infinitesimal generators T, X, Y, Z, R12, R23, R31, G and S = $1 + $2 
where S generates the one parameter group of scale change. The restriction 
to two space dimensions is straightforward. 

The infinitesimal generator T is associated with the time translation. 
The infinitesimal generators S, S~, and S: are associated with scale change. 
Whereas the Euler equations admit two scale transformations, namely, S, 
and $2, the Navier-Stokes equations admit only one scale transformation, 
namely, S = S1 +$2. The infinitesimal generators Rl2, R23, R3~ generate a 
three-parameter rotation group. We mention that the velocities u, v, w rotate 
with the coordinate. The infinitesimal generators X, Y, and Z are associated 
with the space translation when we put f , ( t )  =f2(t)  =f3(t)  = I. I f  we take 
into account an arbitrary f ,  then the moving axes remain parallel to the 
fixed axes but the origin traces an arbitrary smooth path. The inertial reaction 
produced by the acceleration of  the frame is balanced at each instant by a 
spatially constant pressure gradient. The transformation group which is 
associated with the infinitesimal generator G means that the pressure change 
at each instant is uniform over the fluid and does not affect its motion. 
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3. SIMILARITY ANS.ATZE FOR F INDING ORDINARY 
DIFFERENTIAL E Q U A T I O N S  

In thissect ion we derive similarity Ans~itze for the Euler equations and 
the Navier-Stokes equations. With these Ans~itze we derive a system of 
ordinary equations. 

In our first example we consider the two-dimensional Euler equations 
and calculate a similarity Ansatz where we take into account the symmetry 
generators T, S~, $2, and R I 2 .  In this example we describe the technique in 
detail, whereas in the following examples we give the results only. Since in 
the present case there are three independent variables we need the symmetry 
generators which forms the base of  a Lie algebra. We choose 

V~ = a T +  b( S,  - $2) (7a) 

and 

V 2 =- CRl2 (7b) 

where a, b, c ~ R. Thus we find 

V l = a O / O t + b ( x O / O x + y O / O y + u O / O u + v O / O v + 2 p O / O p )  (8) 

We notice that [ Vt, V2] = 0. 
In order to find the similarity Ansatz we must calculate the transforma- 

tion groups. Instead of solving equation (5) we can solve the autonomous 
system of differential equations 

d t /  del = a, d x /  del = bx, 

d u /  del = bu, d v /  del = by, 

leads to the transformation group 

t = a 6 1  + to, x = Xo e be~, 

11 = U 0 ebet~ I) ~ 1)0 ebel,~ 

cly / cle l = by  
(9) 

dp /  del = 2bp 

Y = Yo eb'~ 

P = Po eRb~ 
(lO) 

where et is the group parameter.  With the infinitesimal generator V2 the 
autonomous system 

d x / d e 2  = - c y ,  dy /de2  = cx 
(ll) 

d u /  d e  2 = - c v ,  d r / d e 2  = cu  

is associated. We obtain the transformation group 

X = X  o c O S  c E 2 - - y o s i n c e  2 

Y = Yo cos ee2 + Xo sin ee2 
(12) 

U = ~0 COS r E  2 - -  V 0 s i n  CE 2 

v = Vo cos ce2+ Uo sin ce., 
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The composi t ion  o f  both  groups  leads to the two-parameter  g roup  

t = ae~ + to (13a) 

x = [Xo cos(ce2) - Yo sin(ce2)] e b~ (13b) 

Y = [Yo cos(ce2) + Xo sin(ce2)] e b~ (13c) 

u = [Uo cos(ce2) - Vo sin(ce2)] e b~ (14a) 

v = [Vo cos(ce2) + Uo sin(ce2)] e b~ (14b) 

P = P o e  2b~ (14c) 

For  finding a similarity variable ~7 we have to specify the variables Xo, Yo, 
and to. We choose  Xo = 1, Yo = 0, and to = 7. From equat ion (13) it follows that 

t = a e l  +~q 

x = e b~, cos(ce2) 

y = e b~' sin(ce2) 

(15) 

The solution o f  these equat ions is given by 

el = ( I / b )  In r, e2 = ( I / c )  a r c t a n ( y / x )  
(16) 

71= t - ( a / b )  In r 

where r 2 = x 2 + y  2. Insert ing e~, ez, and ~7 into the equat ion (14) we obtain 
the similarity Ansatz 

u( x, y, t) = XUo( rl ) - yVo( ~ ) 

v(x ,  y, t) = XVo(rl) + yuo(~q) (17) 

p(x ,  y, t) = rZpo(r/) 

Inserting this similarity Ansatz into the Euler equations (1) we find after 
some algebraic manipula t ion  the au tonomous  system of  differential 
equat ions 

u~ = ( 2 b /  a)uo (18a) 

v~[1 - (a /b)Uo] = -2UoVo (1 8b) 

p'o = - ( p b / a ) ( u ~ + v ~ ) + 2 p ( b / a ) 2 u o + ( Z b / a ) p o  (18c) 

where '  ---- d~ d~q. Equat ion  (18a) follows at once f rom the continuity equation.  
In our  next example we consider the Navier -Stokes  equat ions in two 

space dimensions  and the symmetry  generators T, X, and Y where fl  = const  
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and f2 = const. By inspection this leads to the similarity Ansatz 

u(x, y, t) = Uo(n) 

v(x ,  y, t) = Vo(7/) (19) 

p(x, y, t) = p o ( n )  

where the similarity variable r/ is given by 

~1 = ax  + by + ct (20) 

Inserting this Ansatz into the Navier-Stokes equations we find after some 
algebraic manipulation the system of ordinary equations 

R e  
u~= a2 + b 2 ( c + a u ' o + b v ~ ) u ~  (21a) 

R e  l! I I ! 
Vo = a2+ b2(C+ auo+ bvo)Vo (21b) 

p~, = 0 (21c)  

From the continuity equation we obtain au'o+ bv'o = 0. It follows that auo+ 

bvo = K,  where K is a constant. Therefore equations (21a) and (21b) reduce 
to a linear system of differential equations 

Re  IF 
Uo = 2 _ ~ 2 ( c + K ) U r o  

a -t- o 
(22) 

Re  
t /  .3r ! 

Vo a 2 + b i ( C  K ) v o  

In our third example we consider the infinitesimal generators aR12 and 
bS. We mention that [Rl2, S] = 0 and therefore these infinitesimal generators 
can be used for deriving a similarity Ansatz. We find the two-parameter 
transformation group is given by 

X ~- X 0 e be' COS(ae:) --Yo ebb' sin(ae2) 

Y = Yo ebb' cos(ae2)+ Xo e bE' sin(ae2) (23) 

t -~  t 0 e 2be l  

u = Uo e -be' cos(aez)  - Vo e -be' sin(ae:) 

v = Vo e -b`l cos(ae2) + Uo e -b~' s in(aez)  (24) 

P = Po e-2bel 

If  we choose to =~7, Xo =1,  and Yo, then we find that e l = ( 1 / 2 b )  l n r  2, 
e 2 = ( 1 / a )  a r c t a n ( y / x )  and ~ l = t / r  2, where r 2 = x E + y  a. The similarity 
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Ansatz is given by 

u ( x ,  y ,  t )  = X U o ( , ) / r  2 - -  yvo(rl)/r 2 

v( x, y, t) = XVo("q ) / r2 + yuo( rl ) / r 2 

p(x, y, t) =po(rl) /r  2 

(25) 

Substituting this Ansatz into equation (2) we find the following system of  
ordinary differential equations: 

' - 0  (26a) U 0 - -  

, [2  Re Re \ 
v~ + v o ~ - ~ - ~ 2  +~-~Uo) =O (26b) 

p'o+lpo+~l-~-(u2+ Vo z) = 0 (26c) 
~7 zB 

Equation (26a) follows at once from the continuity equation. 
In our last example we study two-dimensional Navier-Stokes equation 

and the symmetry generators a ( X  + Y)  and cS, where a, c ~ 1~. We note that 
[aX + a Y, cS] = ac (X  + Y)  and therefore a similarity Ansatz can be found 
with the help of these generators. 

I f  we insert to = r/, Xo = 1, and Yo = 0, in the two-parameter  transforma- 
tion group, then we find el = y ( a x - a y ) ,  e2 = ( l / c ) l n ( x - y )  

t 

(x _y)2  (27) 

Uo( n ) 

~7 

The similarity Ansatz is given by 

u(x, y, t) - 
x - y  

Vo(n) v(x, y, t) = (28) 
x - y  

po(n) 
p(x, y, t) = (x _y)2  

(29) 

Inserting this Ansatz into the continuity equation we find that 

2r/(Uo - Vo)'+ (Uo- Vo) = 0 

This leads to 

uo-  Vo = C~7 -1/2 (30) 
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Inserting equation (28) into equation (2) and taking into account equation 
(30) we obtain 

rl uo-  ~76-26r13/2C--~rl 2 u'o+ +6~7~/2C u o -  C~-~/2=0 

rlZV~-(rlS-2~rl3/2C-~rl2)vro+(2+6"ol/2c)vo+~C'o-l/2=O (31) 

8r/2p~+ 8 rlpo + C~? -1/2 = 0 

where 6 = Re~8. For the particular case where C = 0 we find 

z ,, ( 5 2'~ , , n  
rl Uo- rl6-~rl ]Uo• (32a) 

r/ Vo- r/8 2 / 2 

np~+po = 0 (32c) 

If 8 = 0 (i.e., Re = 0), then the solutions to equations (32a) and (32b) are 
given by 

Uo(~/) = C~ ~-1/2 + C2r1-1 

Vo(r/) = C3rl-L/2 + C4~ -~ (33) 

Also the asymptotic behavior of equations (32a) and (32b) (i.e., r /~  ~ )  is 
given by these expressions. 

The Euler equations and the Navier-Stokes equations given by 
equations (1) and (2) together with equation (3) can be studied for two 
space dimensions from a different point of view introducing the so-called 
stream function ~O. The stream function q~ is given by 

oq, aq, 
u = v = - - -  (34) 

Ox' Oy 

Eliminating the pressure p in equation (2) by differentiation and taking 
into account equation (3) we obtain 

a/a~, a~r a,~/a3~, o% \ ,  a~,/a% o% \ 

1 [ a 4 a4~ a4~ \ 
(35) 
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If we put Re ~ oo, then we obtain the equation which is associated with the 
Euler equation (1), namely, 

a/o2f a2f  af(o'f, o3f .af/a3 o a3f \ 
~k~x2+~y2) - ~ x  \~ ~-e Ox--~-fOy] -r~yy ~x3  + ~ )  =0 (36) 

The Lie symmetry groups of the equations (34) and (35) have been 
given by Cantwell (1978). The infinitesimal generators take the form 

T =O/Ot 

X : f l ( t )  O/3t +f~(t)y a/Off 

Y =  f2( t) O/Oy - f~ (  t)x O/Of 

G =f3(t) 0/0qJ (37) 

S = x O/Ox + y O/Oy + kt O/Ot + (2 -  k ) f  0/0f  

R12 = x O/Oy - y O/Ox 

R = ty O/Ox- tx O/Ox+(1/2)(x2+y 2) O/Of 

where k is arbitrary for equation (36) and k = 2 for equation (35). 
Let us now consider group theoretical reductions of equation (36). 

Taking into account space and time translation X, Y, and T with f l ( t ) =  i 
and f2(t) = 1 we obtain 

f ( x ,  y, t) = f (  klX + k2y - tot) (38) 

Inserting equation (38) into equation (36) yields 

to( k~ + k2)f ' '= 0 (39) 

The group theoretical reduction with the help of S (with k = 2) and X + Y 
[with f l ( t )  =f2(t) = 1] yields 

f(x, y, t) =f(r l )  (40) 

where 

We obtain 

"11 = t / ( x  _ y)2 (41) 

2~Tzf"+ 7rlf '+ 3f.'=O (42) 

The group theoretical reduction with the help of  K and R12 yields 

f(x,  y, t) =f(~7) (43) 
where 

77 = (x 2 + y2)1/2/tl/2 (44) 
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We obtain 

r/2f" + 3 r/f" + f '  = 0 (45) 

Also all other reductions give linear differential equations. For the equation 
(35) the reduction also yields linear differential equations. Notice that also 
equation (18) is linear, because equation (18a) is linear and the solution 
can be inserted into equation (18b) which becomes then also linear but 
nonautonomous. Then inserting the solutions to equations (18a) and (18b) 
we find that the equations (18c) also become linear. 

If we take into account only one symmetry generator, then we can 
reduce the partial differential equation (36) with three independent variables 
to a partial differential equation with two independent variables. Let us 
study three cases. If we consider the symmetry generator given by equation 
(38), then we find the Ansatz 

O(x, y, t)=f(r,  t) (46) 

where r 2-- x2+ y2. Inserting equation (46) into equation (36) we find the 
linear partial differential equation 

03t~/Ot Or2 + ( 1 / r )  02~/Ot Or=O (47) 

If we consider the symmetry generator X + Y, then we have 

O(x, y, t )= f ( k l x+  kEy, t) (48) 

We obtain again a linear partial differential equation 

03f/Ot 07"12 = 0 

where ~ = klx + kRy. The following case has been studied by Cantwell (1978). 
He considered the invariance under stretching. The infinitesimal generator 
is given by 

S = x O/Ox + y O/Oy + kt olot + (2 -  k)O 0100 (49) 

where k is an arbitrary constant. The similarity variables are given by 

1~ -~ Xt -1/k, d/) = yt  -1/k (50) 

and the similarity Ansatz takes the form 

O(x, y, t)= t(2-k)/kF(| ~) (51) 

The function F satisfies a nonlinear partial differential equation, namely, 

- A F + ( F 6 - ( |  AFo-(Fo+(~b/2)) AF~ = (1~Re) A2F (52) 

where A= 02/0~2"Jt-02/0~) 2 and k=2.  
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4. C O N C L U S I O N  

For the Navier-Stokes equations and the Euler equations we have 
given the infinitesimal generators for two and three space dimensions, where 
we have assumed that the fluid is incompressible. The utility of  the 
infinitesimal generators is twofold. First we can find conservation laws. For 
the Euler equations this program has been performed in detail by Olver 
(1982). Second as described above the infinitesimal generators can be used 
for finding similarity Ansfitze. With the help of  these similarity Ans~tze we 
can reduce the partial differential equations to ordinary differential 
equations or to partial differential equations where the number  of  the 
independent variables is lower. For the present case we always find that 
the ordinary differential equations are linear, but in most cases non- 
autonomous.  Although these equations are linear, we are not able in general 
to solve them explicitly. For example, equations (22) can be solved explicitly; 
however, equations (3 l) cannot be solved explicitly. We are forced to solve 
this equation numerically. 

It is obvious that the similarity solutions are particular solutions. This 
means, that if  we impose boundary conditions, then it may happen that 
these conditions are not compatible with the similarity Ansatz. 

Since all reductions lead to linear equations the question arises whether 
the equation (37) is integrable (i.e., a soliton equation) or not. Particular 
Ans~itze for Lie-BScklund vector fields for the equation (37) are not success- 
ful. Thus we conjugate that the equation (37) is not integrable. 
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